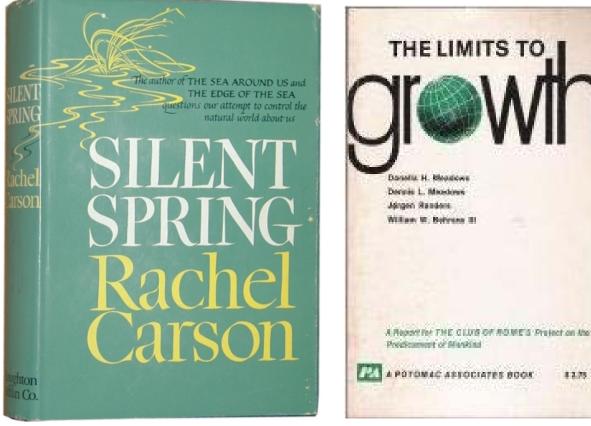
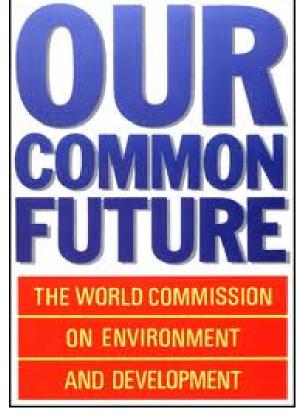
Promising directions in Integrated Pest & Disease Management that require further research

Karel Bolckmans

Integrated Pest Management the way forward to Sustainable Agricultural Production Brussels, June 19th, 2012




"Good forecasts are not those that occur, but those that lead to action."

Michel Godet, 2012

8.2.75

1972

1962

1987

New Roads to New Goals

- ✓ The Market demands *residue*-poor or even residu-free produce (food safety)
 - Retailers impose extra-legal requirements on farmers
- ✓ More attention for *worker safety* of the farmer and his **personel**
- Society and Legislator want less impact on the *environment* and *public health*
 - Stronger regulatory requirements have lead to less and safer pesticides
 - IPM has to lead to reduced use of pesticides (National Action Plans)
 - No emission of pesticides into the environment (Water Framework)

 Sustainable Food Production : more production with less input and less impact.

Challenges for sustainable crop protection

Residue Management

- license to supply

Resistance Management

- relying only on pesticides will lead to pesticide resistance problems
- pesticide resistance leads to more intensive usage and ultimately even to the use of illegal pesticides (food safety)

✓ Rentability

- more yield with less **cost** and less **Risk**

Conclusions

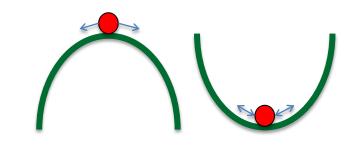
- ✓ Chemical pesticides can and will no longer be the *basis* for crop protection.
- ✓ Integrated Pest and Disease Management has to be lifted to a higher level.
- ✓ Resilience against climate change and invasive alien pests and diseases

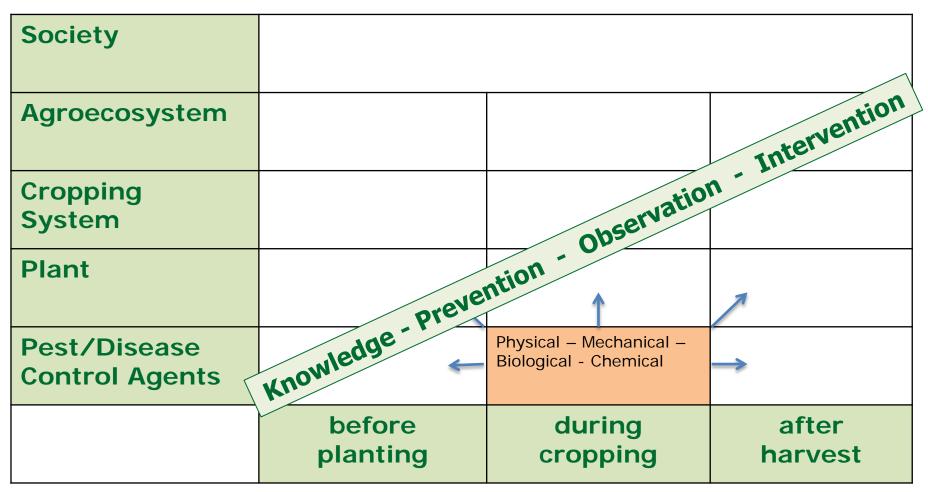
Thinking differently: from less negative impact, to a positive impact on the biodiversity and environment.

TECHNIQUES FOR — REDUCING — PESTICIDE USE

Economic and Environmental Benefits

Edited by David Pimentel


From mainly curing, to mainly preventing


- ✓ From reductionism to holism
- ✓ Resilient production systems
 - from risky balancing ...
 - ... to self-balancing systems
- ✓ Biological control
- ✓ Slowing down pest and disease development
- ✓ Systems thinking at all system levels (*prevention*)
 - Resilient Plant
 - Resilient Soil/Substrate
 - Resilient Cropping Systems
 - Resilient Agro-ecosystems
 - Resilient Society sufficiency

"the root cause"

- efficiency

+ interactions between system levels

IPM = Systems Thinking

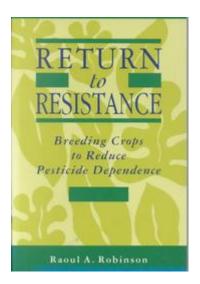
Biological Control

- ✓ Classical Biological Control
- ✓ Conservation Biological Control
- ✓ Augementative Biological Control

Biological Control Agents

- ✓ Develop and improve beneficial insects and mites
 - Screening of new BCA's
 - Selective breeding
 - Endosymbionts
 - Generalists
 - "Standing army" of predators
 - Semiochemicals
- ✓ Sterile Insect Technique
- Develop and improve microbial antagonists of pests and diseases
 - screening of new BCA's
 - formulation

Pseudomonas chlororaphis op Fusarium oxysporum on tomato roots



Resilient Plants

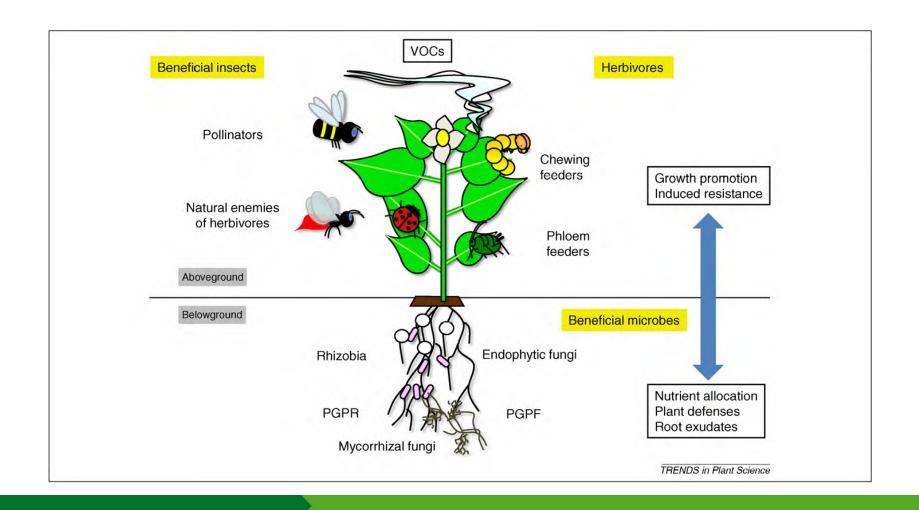
- ✓ Breeding for Resistance
 - (partial) resistance, multi gene resistance
 - more adapted for beneficial insects and mites
- Induced Systemic Resistance (ISR)
 Systemic Acquired Resistance (SAR)
 - activators
 - micro-organisms : seed treatment
 - predatory bugs
- ✓ Endophytes : "systemic" micro-organisms
- ✓ Resistance Inducing Substrates
- Low doses of pesticides to slow down pest development
- Preventive release of predators and parasites ("standing army")

Resilient Soils/Substrates

Resilient Soils/Substrates

a.k.a. "suppressive soils"

1. Respecting (microbial) soil life


- avoid harmful pesticides
- improve the physical/abiotic conditions in the soil
- 2. Increasing the quantity of (microbial) soil life
 - soil organic material (SOM), compost, green manure, ...
 - biostimulants

3. Increasing the diversity of (microbial) soil life

- soil organic material (SOM), compost, green manure, ...
- 4. Adding specific antagonists
 - Trichoderma spp., Bacillus spp., Pseudomonas spp., etc.

The root cause ...

Pineda et al., 2010, Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science. Vol.15, Issue 9, p. 507-514

What can microbes do for us ?

• Nutrient Uptake enhancement and Plant Growth Promotion

- increase root surface, production of bio-active compounds for plant uptake : Plant Growth Promoting Micro-organisms (PGPR's), mycorrhiza, biostimulants

• Nutrient bio-availability enhancement

- increase availability of nutrients : fertiliser solubilization (e.g. phosphate), mobilization (e.g. potash), decomposition of organic material

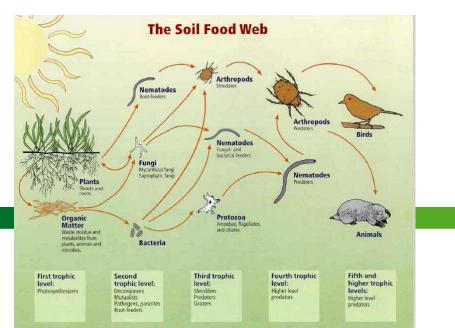
• Nitrogen fixing

- Nitrogen fixing bacteria (Rhizobium spp. and free-living bacteria), Inoculants

Improve soil aggregation

- Mechanisms : production of polysaccharides to improve soil aggregation

What can microbes do for us ?


Tolerance to salinity

osmotic protectants : enable crop production in salinated soils

Tolerance to drought stress

enable crops to better tolerate periods of drought.

Soil Food Web!

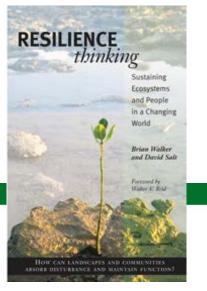
Crop Protection & Productivity

- ✓ Increased production when intensive use of chemical pesticides is stopped.
- ✓ Plant growth promoting (PGP) effect of antagonistic microorganisms ("biofertilizers").
- Reduction of use of chemical fertilizers by applying micro-organisms ("biofertilizers").
- Protection against salt stress and drought stress by using microorganisms.
- ✓ Convergence of Integrated Pest & Disease Management (IPM) and Integrated Soil & Nutrient Management (INM).

Plant Protection Policy Paradox

Succesful European policy aimed at reducing the number of chemical PPP's and the use of chemical PPP's.

Policy is not sufficiently aimed at enabling the development and availability of alternatives:


- 1. Registration requirements for microbials.
- 2. Very long registration proces for microbial biological control agents due to insufficient expertise of the examiners.
- 3. Declining support of research into non-chemical alternatives. Tunnelvision with regards to genetics only.
- 4. Regulation of biostimulants and biofertilisers. Are now considered as PPP's under 1107/2009.

Resilient Cropping Systems and Agroecosytems

- ✓ Diversity in time: crop rotation
- ✓ Diversiy in space:
 - at the **field** level: mixed cropping of varieties with different resistance genes , different crops, agroforestry, ...
 - at the **landscape** level: functional agrobiodiversity, ecological focus areas, ...

✓ Diversity and Redundancy of crop protection practices

Agronomic research

"We are now on the threshold of a third phase in the development of IPM systems that recognizes pests not as enemies, but as indicators of problems in the design and management of systems"

Hill (1985)

Thank you !

kbolckmans@koppert.nl

Research Needs

- 1. Screening of new BCA's* + development of efficient and effective screening methods for BCA's
- 2. Pro-active research on Invasive Alien Pests
- 3. Effect of biological control on crop yield
- 4. Effect of BCA's on resistance against biotic (pests, diseases) and abiotic stresses (salinity, drought, heat)
- 5. Environmental Risk Assesment, development of ERA methods
- 6. Human Risk Assesment (toxicology, pathogenicity, etc.), development of HRA methods
- 7. Production technology for microbial and invertebrate BCA's (cost, reliability, quality, scale)
- 8. Formulation technology for BCA's

Research Needs

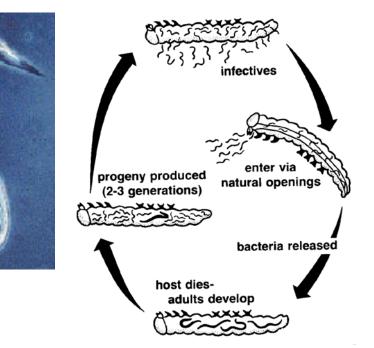
- 9. Long term storage of BCA's
- 10. Quality Control methods
- 11. Techniques for enhancing efficacy and consistency of BCA's (e.g. endosymbionts, selective breeding, synergists, plant breeding, conservation biocontrol, etc.)
- 12. Application technology for BCA's
- 13. Integration in IPM Systems, Total Systems Approach
- 14. Agroecology, Systems Thinking, Resilience Thinking, Complexity theory, ...
- 15. Farmer training and technical support (advisory services), Simplification
- 16. Cost-Benefit Analysis of biontrol-based IPM
- 17. IPM Indicators

Predators

Predators

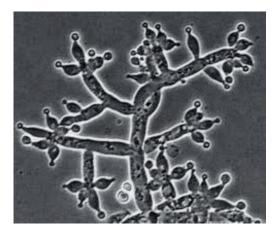
Parasites

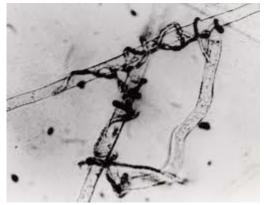
Sterile Male Technique



Insect Pathogens

Insect Pathogenic Nematodes





Biological Control of Diseases

- Foliar diseases and root diseases
 => Control microbes with microbes
- Mode of action
 - 1. Antibiosis
 - 2. Competition
 - 3. Parasitism
 - 4. Compensatory root growth
 - 5. Activating plant defense system

Pheromones

